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A variational principle for the reflectance is derived for elastic scattering from one-dimensional potentials.
Using this principle, we show that the reflection coefficient is given by the ratio of two determinants without
any subsidiary calculation of the wave field in the crystal and without any need to perform a matching
on the boundary. The results are valid for crystals having variable lattice constants, including the possi-
bility of impurity layers. For scattering from periodic potentials, the results are most conveniently obtained
by employing Bloch’s theorem with the wave number inside the crystal obtained from evaluating a Hill’s
determinant. The variational principle is also employed to obtain a modified Born approximation for the
reflectance. We also compare the reflectance given by approximate wave functions with the exact reflectance
for the Kronig-Penney model, the latter also having been obtained by the variational principle.

I. INTRODUCTION

ECENTLY there has been renewed interest in the

use of low-energy electron diffraction (LEED)

as a tool for the study both of surfaces and the inter-
action of electrons with solids.*

The most significant early work that related the ex-
perimental results to quantum theory was performed by
Bethe,? who assumed the diffraction pattern was the
result of elastic scattering of the incident electrons on
the periodic crystal potential. He calculated the re-
flected intensities by matching the incident and the
diffracted plane waves to a linear combination of waves
with the same energy in a crystal having wave number
parallel to the surface 27 times a reciprocal-lattice
vector different from the incident wave. The latter
requirement is a rigorous consequence of lattice peri-
odicity parallel to the crystal surface. Bethe found that
a qualitative understanding of the data could be ob-
tained using only a two-beam model, this model leading
to energy gaps in the allowed energy spectrum in the
crystal and, consequently, to large reflection coefficients
at these energies. He was also able to deduce that the
Bragg peaks should be shifted from the positions derived
from a simple geometric diffraction theory. Bethe’s
theory is in principle essentially correct for elastic
scattering, but a two- or three-beam calculation is not
capable of giving trustworthy quantitative results.

Boudreaux and Heine® have observed that the Bethe
method may be more accurately employed if one uses a
pseudopotential instead of the crystal potential. The
advantage of the latter arises from the fact that only a
few Fourier components of the pseudopotential will be
large, and, consequently, the calculation of the allowed
energy-band structure will be simplified. They have also
pointed out the need to include at least a few of the
infinite number of evanescent waves* allowed in the

* Work supported in part by USAFOSR Grant No. 1263-67.

*R. M. Stern, J. J. Perry, and D. S. Boudreaux, Rev. Mod.
Phys. 41, 275 (1969).

. Bethe, Ann. Physik 87, 55 (1928).

3D. S. Boudreaux and V. Heine, Surface Sci. 8, 426 (1967).

4V. Heine, Proc. Phys. Soc. (London) 81, 300 (1963); J. B.
Krieger, Phys. Rev. 156, 776 (1967).

finite crystal in matching the wave functions on the
surface.

Another technique used to obtain the energy eigen-
values and the corresponding Bloch waves in the crystal
has been given by Marcus and Jepsen.’ They truncate
the potential by taking only a finite number of Fourier
components in the direction parallel to the surface and
treat the variation of these Fourier components in the
perpendicular direction exactly. Since this method be-
comes rapidly more complicated as the number of
Fourier components increases, it is useful only for low
energies.

The above-mentioned techniques all have certain
basic elements in common, i.e., the numerical calcula-
tion of the wave field in the crystal and the matching of
the wave field to the incoming plane wave at the surface.
The application of such an approach has certain in-
herent difficulties. Since the match on the surface is
very sensitive to the precise values of the wave func-
tion at the boundary, a detailed calculation of the
interior wave field is necessary in order to obtain reliable
reflection coefficients.

Furthermore, these techniques are difficult to apply
to anything but crystals having the same periodic
potential right up to the boundary surface, followed
by a sharp discontinuity into the vacuum. Thus, the
variable interatomic distance near the surface is a
significantly complicating factor, as is the change in
potential in the last few layers and nearby ‘“vacuum,”
because of the exponential tailing off of the electron-
density distribution. Finally, it is possible in principle
to take impurity layers into account but it is difficult
in practice.

Methods for the calculation of LEED intensities
that do not make explicit use of Bloch functions have
also been proposed. McRae® has developed such a
technique by applying Lax’s” multiple-scattering theory

5P. M. Marcus and D. W. Jepsen, Phys. Rev. Letters 20, 925
(1968).

6 E. G. McRae, J. Chem. Phys. 45, 3258 (1966).
( 4 M) Lax, Rev. Mod. Phys. 23, 287 (1951); Phys. Rev. 85, 621
1952).
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1 APPLICATION OF A VARIATIONAL PRINCIPLE: .-

to the LEED problem. But this method appears to be
difficult to apply to any problem involving more than
s-wave scattering from the individual atoms. Kambe?®
has also considered the problem of scattering from a
periodic array of muffin-tin potentials and has given
formulas for the reflection coefficients. These formulas,
however, contain the expansion coefficients of the wave
field in the crystal, which leads to the necessity of cal-
culating hundreds of unknowns for the case of diffrac-
tion from a thick crystal. Finally, more recently,
McRae? has generalized Darwin’s dynamical theory of
x-ray diffraction to the #-beam case and thus has con-
structed a technique that is suitable for LEED calcula-
tions. This method requires a knowledge of the scatter-
ing amplitudes of a single layer (which can be obtained
from Kambe’s work) and thereby eliminates the neces-
sity of numerical integration of the Schrodinger equa-
tion. Calculations of this type, however, do involve the
inversion of large matrices.

The enormous amount of numerical calculations
necessitated by these methods leads one to look for
simpler techniques for the calculation of LEED in-
tensities. The fact that the energy-band structure es-
sentially determines the position and width of the
diffraction maxima for elastic scattering suggests the
use of a variational principle, which has been so useful
in atomic binding-energy problems and in solid-state
physics. Furthermore, variational principles have been
successfully employed in scattering theory both in
nuclear and atomic physics. Moreover, a significant
simplification occurs when such a principle is applied
to scattering from periodic potentials because the con-
servation of k;; mod 27 times reciprocal-lattice vectors
means we do not require the scattering amplitude for
all angles but only for those discrete angles correspond-
ing to a given energy and a discrete finite set of k.
Thus, the scattering from a crystal resembles in some
ways a one-dimensional scattering problem in that one
is interested in a set of reflection coefficients (in a one-
dimensional problem there is only one reflection coef-
ficient) instead of a continuous scattering ampli-
tude that would represent an infinite set of reflection
coefficients as one would have in nuclear or atomic
scattering.

In this paper, we report on the use of a variational
principle for the calculation of the reflection coefficient
for elastic scattering from a one-dimensional periodic
potential. The generalization to three-dimensional
problems will be presented later. We show that for one-
dimensional problems the reflection coefficient is given
by the ratio of two determinants without any subsidiary
calculation of the wave field in the crystal. For scatter-
ing from periodic potentials, the results are most con-
veniently found by employing Bloch’s theorem with £

8 K. Kambe, Z. Naturforsch. 224, 322 (1967); 22A, 422 (1967) ;
23A, 1280 (1968).
9 E. G. McRae, Surface Sci. 11, 479 (1968); 11, 492, (1968).
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obtained from evaluating a Hill’s determinant. A
modified Born approximation is also obtained. Further-
more, we compare the reflectance given by approximate
wave functions to the exact reflectance for the Kronig-
Penney model, the latter also having been obtained by
the variational principle.

II. FORMULATION OF VARIATIONAL
PRINCIPLE

We consider one-dimensional elastic scattering by
nonrelativistic electrons that have a definite energy and
are incident from x= —c. A variational principle for
the transmission coefficient has been previously given
for the case by Morse and Feshbach.® We shall adapt
their discussion for the calculation of the reflection
coefficient.

The Schrédinger equation for a particle with potential
energy U(x) and energy e=#%%%2/2m may be written

d2

V@RV () =0, (1)
x
where

2m
V(x)= ;U(x). (2)

It is convenient to write Eq. (1) as the integral
equation

¢@0=%@%+/G®WUV&OMﬂMM, ®

where

¢,0(x):eikx (4)

is the incident plane wave and G(x,x’) is the one-
dimensional free-electron Green’s function.

i
Glaa') = — —e*le=l, (5)
2k

where G satisfies

d2

—G(x,%")+E*G(x,2") = 5(x—x) .
dx?

The reflection coefficient R is obtained directly by
letting £ — —o in the integral equation. Then"(as-
suming V(x) — 0 for x — — )

tﬁ(x) :eik.v_l_Re—ik:c’

R=—— [y, ©
2k

1
= v
2kR

0P. M. Morse and H. Feshbach, in Methods of Theoretical
Physics (McGraw-Hill Book Co., New_York, 1953), p. 1128.
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Equation (3) may now be written as a homogeneous
equation in which R appears explicitly. Using Eq. (6),
we obtain

Y(w)=— ﬁ /ei’“”'V(x')\//(x')dx’eik”

+/G(x,x’)V(x’)¢(x’)dx’. )

Multiplying Eq. (7) by ¢(x)V(x) and integrating
over all space, we obtain

R=— ;;(/elk*V(x)gb(”c)(Z‘c)Z//dxtﬁ(x)V(x)
x@w—/awwwwwwm).@>

Equation (8) is an exact expression for R, in terms of
the exact solution y(x) of the Schrodinger equation. It
is shown in Appendix A that when the exact ¢(x) is
substituted into Eq. (8), R is an extremum, and, hence,
we obtain the variational principle §R=0.

A similar expression may be constructed for the
transmission coefficient, which may also be shown to be
an extremum for small variations about the exact wave
function.®

The exact wave function may always be expanded in
terms of a complete set of functions. We take a linear
combination of a finite subset of these functions as a
trial wave function. Thus,

¢m=§cmm, ©

where the C; are complex parameters that are chosen
such that R is an extremum. Substituting Eq. (9) into
Eq. (8), we obtain

R=—(i/2k) 3. DiD,CiCy/ 3 FiC:iC;,  (10)
where
D= /(bi(x)V(x)e“”dx,
X<¢j(x)— / G(x,x')V(x’)cbj(x’)dx’)dx. (11)
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The requirement that R is an extremum is equivalent
to"
R

— =0, i=1,...,n
aC;

which yields the set of equations

n

7
> (Fij+_DiDj>Cj:0, i=1,...,n (12)
2kR

=1

where we have used F;=F;;, which follows from
G(x,x")=G(x' ).

The necessary and sufficient condition required so
that not all C; are zero in Eq. (12) is that the deter-
minant of the coefficients is zero, i.e.,

det(AU) =0 y (13)

Ay=F i+ (i/2kR)D;D;. (14)

In his work on nuclear-collision theory, Kohn!! has
proved that an equation of the form of Eq. (13), with
elements given by Eq. (14), constitutes a linear equa-
tion for R and hence determines R uniquely. This is
different from the usual secular equation for the energy,
where the degree of the equation in the unknown
energy equals the number of wave functions summed
in Eq. (9).

The transformation Kohn!! used is

where

fi=2 CiDs,
=1 (15)
fi=Cy, 17#1.
Equation (10) then may be written
n 1
2 Hiififi+ —f*=0, (16)
i,5=1 2kR
with
Fll
H11= ]
Dy?
) Flj FnDj .
Hyj=Hp=————, J#1 17
D, D?
Dl FuDD;  FaD; L
Hij=15— + - » L jFEL
D; D2 Dy

The requirement that R is an extremum subject to
variations in the f;leads to a set of homogeneous equa-
tions whose compatibility condition is

det(H ;4 (i/2kR)41:81,) =0,

which is evidently linear in R, and the solution for R is
the ratio of two determinants, i.e.,

(k/1)R=|M|/|Hy]|,
' W, Kohn, Phys. Rev. 74, 1763 (1948).

(18)

(19)
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where |M| is the (1,1) minor of H;; and is given by
|M|=Hy| 4,7=2,...n.

By adding D; times the first row of H;; to the ith
row and Dj; times the resulting first column to the jth
column, we find

|Hi;| = |Fy|/De?,
and hence

i |Hylij=2,.. .
Laicihl -, (20)

1
2k |Fij

Thus far, the derivation has been entirely general and
has made no assumptions about the form of the poten-
tial. However, if the potential is perfectly periodic inside
the one-dimensional crystal and goes to zero abruptly
at the boundary, we may make use of Bloch’s!? theorem,
which states that the eigenfunctions in the crystal for
a given energy may be written

$(x)=e**Up(x), (1)
where & is the wave number of the Bloch wave having

energy #%?/2m and U (x) is periodic in the lattice.
If the energy is in a band gap, & will be complex.

A VARIATIONAL PRINCIPLE.-:-
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There are always two solutions corresponding to -k’
and since the energy must be even in £/, the two waves
have equal and opposite velocity. For a semi-infinite
crystal filling the positive axis, only the wave with
velocity in the positive x direction in the crystal is
allowed the other wave representing current incident
from x — 4 . Thus, instead of including all known
components in our set of basis functions, we can write

Y(x)=e*"*Up(x), (22)
where

U]c’(x) :Z U"’eih’nr/a (23)

and @ is the lattice constant. Hence, we can take a
linear combination of functions of the type eil#'+@mn/e)le
as our trial wave function and obtain the reflection am-
plitude as a function of £/, the wave number of the elec-
tron in the crystal. The appropriate %’ can be obtained
by evaluating a Hill’s determinant for the one-dimen-
sional energy-band structure problem. The solution
given by Morse!? is

sin2(3k'a) =sin?(3ka)- A(0), (24)

10>

2
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Fic. 1. Reflectance | R|?2 versus incident electron energy E for P= —2. The energy scale is in units of h?/2ma2 The dotted curve is
the exact solution. The solid curve is obtained by putting e# as the trial wave function.

12 F. Bloch, Z. Physik 52, 555 (1928).
13 P, M. Morse, Phys. Rev. 35, 1310 (1930).
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where A is

—A Ay —dy —dy —A
1—W V=W A=W 1—W 1—W
Ay —A, Ay —Ay —4,
v —w ' Tw v w
Ay Ay —A Ay —4s
W =W 1= —W 1—w
A=Ay =4y —As A,

W R—W r—W 2—W 2w
A=Ay —A g —Ay —A,

R W R—W R R R
A=Ay —A 4 —Ay — Ay —A_

W e We—WR—We—W -
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with
2m\ 2 .
V(x)=(~> S Apei@Grrlae - 4,=0
a n

W =[(a/2m)k 2.

Thus, by including enough Fourier components in the
trial wave function and using %’ obtained from the Hill’s
determinant, the reflection coefficient for one-dimen-
sional problems may be obtained with as much accuracy
as desired without the necessity to actually calculate
the coefficients U, or perform the matching on the

(25) surface of the crystal, as originally done by Morse.
5
III. APPLICATION TO KRONIG-PENNEY MODEL

In Sec. II, we made use of linear variational parame-
ters to obtain the reflection coefficient, with &’ deter-
mined by the solution of a Hill’s determinant. It is
possible to derive a more general variational principle
that is valid for three-dimensional problems and to ob-
tain the reflection coefficients by expanding the wave
function in the crystal in terms of the set of Bloch waves
in the crystal having the same energy and the same k;,
mod 27 times a reciprocal-lattice vector. However, the

REFLECTANCE

P=-8

3.0

h2
ENERGY (—)
2ma

Fic. 2. Reflectance | R|?2 versus incident electron energy E for P= —8. The energy scale is in units of h?/2ma? The dotted curve is’%§
the exact solution. The solid curve is obtained by putting e** as the trial wave function.
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F1G. 3. Reflectance |R|? versus incident electron energy E for P=—2. The energy scale is in units of h?/2ma2. The dotted curve
is the exact solution. The solid curve is obtained by putting e/(¥*~Vo'z as the trial wave function, where V, is the average

inner potential.

solubility of the three-dimensional Hill’s determinant
for the corresponding values of %’s is questionable, i.e.,
we show in Appendix B that Morse’s solution for the
three-dimensional case diverges. It is consequently of
interest to consider an exactly soluble problem, such as
scattering from the Kronig-Penney!* potential, and to
compare the exact results to those obtained by a direct
use of the variational principle with certain approxi-
mate wave functions.

We thus consider a potential defined by an array of
one-dimensional § functions located at lattice sites

xn=na+a/2 n=0,1,2, ...,

corresponding to a one-dimensional semi-infinite crystal.
Then,

V(@) =3 Mo(@—=a),

n=0

(26)

where A is a constant. The exact solution for the reflec-
tion amplitude R may be obtained directly from the
variational principle by the following procedure. We

14 C, Kittel, in Iniroduction to Solid-State Physics (John Wiley &
Sons, Inc., New York, 1956) , 2nd ed.

take as the exact solution for the wave function inside
the crystal the Bloch wave given by Eq. (22), where

Up(x)=Ur(x+a). 27
Substituting Eq. (22) into Eq. (8) yields
I\ 1 2 1
R= —_ _<__.~___> eika/,__ .
2k \1 —¢i(kt+k)a 1 —ei2k’a
i 14 gik+ra
(28)

+o :
2k (1—eitth")a) (1 — gi2h'a)

for the potential given by Eq. (26), where we have as-
sumed that %’ has a small imaginary part, so that the
term

lim e#*'D — (),
D>

We note that U (x) drops out of the calculation in this
case since it is evaluated only at the lattice points at
which it always has the same value. Equation (28) is
exact, provided the correct £ is inserted. The latter can
be obtained by treating %’ as a nonlinear variational
parameter, i.e., using dR/9k'=0. The resulting equa-
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tion for %’ is simply

P sin(ka)
—— +coska=cosk'a,
ka

(29)

where P=121\a, which is precisely the usual equation for
the energy-band structure for the Kronig-Penney
model. Finally, substituting Eq. (29) into Eq. (28)

gives
sink’a P sink'a  P\|?
IR|2= <1~ —i—>/<1+ —i~~> ,
sinka  ka sinke ke
for k' real (30)
|R|2=1,  for k' complex

where %’ is given by Eq. (29).

This result is equivalent to that obtained by Gerstner
and Cutler, who actually solved for the wave function
inside the crystal and performed the matching on the
surface to determine the reflection coefficient. However,
we need not depend on a comparison with their results
to conclude that our result is exact because our deriva-
tion involves no approximation once the Kronig-Penney

SHEN AND J. B.
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model is assumed. Furthermore, our results suggest
that if the potential is well localized but not a & func-
tion, a trial wave function of the form ¢**'* may yield a
very good approximate value for R, provided %’ is
chosen to make R an extremum.

IV. USE OF VARIATIONAL EXPRESSION
WITH APPROXIMATE SOLUTIONS

A main problem in the approximate calculation of
LEED intensities is the failure of the Born approxima-
tion. The latter approximation is valid, provided the
change in the incident wave function is small due to the
perturbing potential. However, for energies in a band
gap, the wave function inside the crystal is a Bloch
wave with a complex value of %, and thus it exponen-
tially decays away from the surface into the crystal,
which in no way resembles the incident plane wave.
Consequently, when the Born approximation is ap-
plied, certain unphysical results are obtained (i.e.,
the reflection coefficient diverges if the change in wave
number is 27 times a reciprocal-lattice vector, which in
one dimension is equivalent to 2k'=2mn/a), and the
reflection maxima occur only at these discrete energies,

REFLECTANCE

1.2

h2
ENERGY (——)

2ma

Fic. 4. Reflectance |R|? versus incident electron energy E for P=—8. The energy scale is in units of h?/2ma?. The dotted curve
is the exact solution. The solid curve is obtained by putting e/(**~V0'% a5 the trial wave function, where Vo is the average

inner potential.
15 J, Gerstner and P. H. Cutler, Surface Sci. 9, 198 (1968).
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F1G. 5. Reflectance | R|? versus incident electron energy I for P= —2. The energy scale is in units of h?/2maZ The dotted curve is
the exact solution. The solid curve is obtained by taking e?*'= as the trial wave function, where %’ is obtained by the two-beam approxima-

tion-energy secular equation.

with no width in energy. It is possible to include the
effect of the average crystal potential by assuming that
the incident wave number is changed when the electron
crosses the crystal boundary, so that energy is con-
served. This inner-potential correction, however, merely
shifts the maxima but continues to give rise to divergent
reflection coefficients with no width in energy.

In Sec. IV A, we consider the use of the variational
expression given by Eq. (8) together with some approxi-
mate wave functions and compare our results to the
exact solution of the Kronig-Penney model [Eq. (30)].

A. Modified Born Approximation

If we substitute the original plane wave ¥/ (x)=e?*" into
Eq. (8), we obtain the modified Born approximation

R=— £< / V(x)efzwx)z / v

><<eﬂw— / G(x,x’)V(x’)e“”"dx’). (31)

We note that, as in the case of the transmission coef-
ficient!¢ in the thin crystal limit, the first Born approxi-

mation is obtained by omitting the second term in the
denominator. The second-order Born approximation
may be obtained by expanding the denominator, as-
suming the second term is small compared to the first.
Higher-order terms may be obtained by using iterated
solutions of Eq. (3) as trial wave functions in Eq. (8).
However, for a semi-infinite crystal, all these terms
diverge, and the approximation breaks down. Neverthe-
less, Eq. (31) has a finite limit as the size of the crystal
approaches infinity, and, thus, it can serve as an ap-
proximate solution for the reflection coefficient.

We have compared this result for the Kronig-Penney
model to the exact solution. The result obtained from
Eq. (31) is given simply by £'=% in Eq. (28). Figures 1
and 2 are plots of the reflection coefficient |R|?2 versus
energy for two different potential strengths. The dotted
curves are the exact results given by Eq. (30). In these
and all subsequent curves, the unshifted Bragg position
is at the extreme right edge of each band gap, i.e., at the
highest energy for which the exact reflection coefficient
is 1.

We see that, unlike the Born approximation, the
reflection coefficient has been shifted and has a finite
energy width. Furthermore, the maxima of the reflec-
tance is almost precisely in the center of the band gap,
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Fi6. 6. Reflectance | R|? versus incident electron energy E for P=—8. The energy scale is in units of h?/2ma. The dotted curve is the
exact solution. The solid curve is obtained by taking e*'* as the trial wave function, where %’ is obtained by the two-beam

approximation-energy secular equation.

even for potentials that are so strong that the band gaps
are as wide as the bands. Similarly, the position of the
reflection minima is accurately given by the approxi-
mate expression. However, the widths of the reflection
maxima are narrower than those given by the exact
solution, and the reflectance in energies inside the band
gaps is sometimes greater than 1.

B. Correction for Inner Potential

Instead of taking the incident plane wave as the ap-
proximate solution, we can take account of the average
crystal potential by taking

¥ (x) = expli(k*— Vo) /],

as the approximate wave function in Eq. (8), where V,
is the average potential in the crystal. Figures 3 and 4
show some improvement for the sizes of widths of the
reflection maxima, but the positions of the maxima have
been slightly shifted from the more accurate results ob-
tained with no inner-potential correction. This is due to
the band structure for the Kronig-Penney model. We
see from Eq. (29) that at the Bragg condition &=k
(and, hence, electrons having a wave number near,the
Bragg value) nearly have their free-electron % value
and thus have no inner-potential correction.

C. Use of Two-Beam Approximation for k(e)

In both Secs. IV A and IV B, the magnitude of the
reflectance for incident energies corresponding to band
gaps inside the crystal was found to be many orders of
magnitude too large. This result arises from the fact
that, at these energies, the wave number in the crystal
cannot be approximated by its free-electron value be-
cause the Bloch wave corresponds to an exponentially
decaying function with complex %’. It is thus necessary
to employ a better approximation for £’ that includes
the possibility of complex behavior such as the two-
beam approximation originally used by Bethe.

By combining the two-beam approximation of the
energy-band structure with the variational principle,
the reflectance is considerably improved. We take
Y(x)=e?*'* as the approximate wave function, where £’
is the solution of the two-beam approximation secular
equation for the energy given by

2mn
[k — kot Vo]l:<k'+ L) —kt Vo]~ V. ]2=0,

a

where, in turn, V, is the Fourier coefficient ofgthe
potential. Figures 5 and 6 show that, not only are the
widths of the reflection maxima and the reflectance for
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energies outside the band gaps accurately given, but also
the reflectance for energies inside the band gaps has been
reduced by orders of magnitude and is now much closer

2509

to the exact results. The use of a larger secular equation
relating e to £’ would undoubtedly improve these results
even further.

APPENDIX A: PROOF THAT 3R=0 WHEN ¢ IS VARIED ABOUT THE EXACT SOLUTION

From Eq. (8), we have

—(2k/i)6R= 5—2{(/dxnﬁ(x)V(x)yb(x))—(/G(x,x’)V(x’)zp(x’)dx’>2</e”°-”V(x)6¢(x)dx/ef“V(x)¢(x)dx>

—< / e““V(x)%(x)dx)T / dudp(x) V(x)(y[/(x)— / G(x,x')V(x’)¢(x)(ix'>

+ / iy V) 00— / G(m’)v<x'>a¢<x'>dx')]} .

where D is the denominator of the right-hand side of Eq. (8).

Equation (A1) may be rewritten as

— (2k/i)R= Di( / ey { / i)V ) 90— / G(x,x’)V(x’Mx')dx’)

- [ v / v w90 - / G(x,x'>v<x'>a¢<x'>dx')]} ,

where we have used G(x,2")=G(« jx). But

W) — f o) V (W )do! =,

Therefore,

/ ¢<x>V<x>(¢<x)— / G(x,x'>V(x'>¢<x')dx')czx= / RV () (),

and from this,

2
—(2k/1)6R = —(/e“”‘V(x)lp(x)dx)l:/ei’“fV(x)lp(x)dx/e“"”V(x)Szp(x)dx——/e“”V(x);b(x)dx
D2

X(/dxzp(x)V(x)Bylx(x)—//5\&(90V(x)G(x,x’)V(x’)¢(x’)dxdx’>:| .

Collecting terms, we obtain

—(2k/i)sR = 2)2;( f emV(x)gb(x)dx)?[ / <e“”—1l/(x)+ / G(x,x’)V(x’)np(x’)dx')V(x)&nﬁ(x)dxil.

Thus, if ¢(x) satisfies the integral form of Schrédinger’s equation given by Eq. (3), then §R=0.

APPENDIX B: DIVERGENCE OF MORSE’S
SOLUTION FOR THREE DIMENSIONS

For three dimensions, Morse!® claims that the
generalization of Egs. (24) and (25) for the determina-
tion of the band structure is

S(ks' oy’ k. 5 0,8N) = S(kayky k5 a,8,0)A0,0,0), (B1)

where A(0,0,0) is a determinant similar to the Hill’s
determinant A(0) for the one-dimensional case. Here,
k’ is the wave vector for the three-dimensional Bloch
wave, and k is the wave vector if the potential were
zero. The constants a, B8, v are the magnitudes of the
reciprocal-lattice vectors in the «x, v, and z direction for
a system having orthogonal lattice vectors.
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The function
S(a,y,7; a,8,7) = (x*+y>+37)
< 21ax+2mﬂy+2wyz—x2—y2—z2)
1— ,
12a2+m2ﬁ2+'ﬂ272

x 11

l,m,n=—w
(B2)

where the infinite product does not include the term for
which I=m=n=0. We show below, however, that the
right-hand side of Eq. (B2) diverges, and hence, Eq.
(B1) cannot represent the correct band-structure equa-
tion with this .S.

o a(2lx+2my—+2nz —x2—y*—z?)
) 1n<1 - )
124m2+4n2>N2 aQ(l2—+—m2—{—n2)

124 m2fa2>N? a?(P4m2+n?) 2
x2+y2+22

Rimi4n2>N2 Ja(12+-mi4-n?)

+O((Emint) ),

where we have used both the fact that all terms in the
expression that are odd in either /, m, or » must vanish
because, when summed, they occur in pairs with op-
posite signs and the fact that

2 m?
Z —
(l2+m2+n2)2 (l2+m2+n2)2
n? 1

1

=2 (l2—{—m2—{—n2)_2 P_—{—mz-i-?ﬂ ’

© 1

24m24n2>N2 [24m24-n?

The sum

is divergent, as can easily be seen by noting that it is
larger than the divergent integral

1
/—dr,
1,2
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(2l 2my~+2nz —x?—y2—3z2)2

KRIEGER 1

For simplicity we consider the case a=8=+. Then,
InS(x,y,7; @) =In(x2+y2+32)
+o0 a(2lx~+2my~+2nz)
+ > ]n<1—
Lo a(24-m2+n?)
For sufficiently large I>+m?+n?=N?, the term
a2le+4-2my~+2nz) —x2—y2—52
a2(12+m2+n2)

So, using the expansion In(14x)=x—%ix%+..., we
obtain

) . (B3)

«1.

w (—a(21x+2my—f—21zz—x2—y2—22)> 1<

_|_.O l2+ 2_|_,’ 2)—2
(a2(12+m2+n2))2 ) (( n 1) )

(B4)

where the volume of integration is the region outside a
sphere of radius V4-1. It is easy to show that the terms
of O((I*4m?>+n*~2) in Eq. (B4) lead to a correction of
only O(1/N); and since the terms in Eq. (B3) for which
124-m*+n?< N? are finite, we conclude that S is diver-
gent. We also note that the two-dimensional generaliza-
tion also diverges since then we are left with the sum

w 1

124m?2>N2 |2+ g2

which is larger than the logarithmically divergent

integral
1
/ ;;dg )

where the domain of integration is the region outside a
circle of radius N41.



